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Lattice-Boltzmann models for high speed flows
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State Key Laboratory of Tribology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

~Received 17 December 1997; revised manuscript received 22 May 1998!

We formulate a lattice Boltzmann model to solve supersonic flows. The particle velocities are determined by
the mean velocity and internal energy. The adaptive nature of particle velocities permits the mean flow to have
a high Mach number. The introduction of a particle potential energy causes the model to be suitable for a
perfect gas with an arbitrary specific heat ratio. The macroscopic conservation equations are derived by the
Chapman-Enskog method. The simulations were carried out on the hexagonal lattice. However, the extension
to both two- and three-dimensional square lattices is straightforward. As preliminary tests, we present the Sod
shock-tube simulation and the two-dimensional shock reflection simulation.@S1063-651X~98!15911-1#

PACS number~s!: 47.40.2x, 05.50.1q, 51.20.1d
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I. INTRODUCTION

The lattice gas automaton~LGA! model was introduced
as an alternative to traditional methods for numerically so
ing the Navier-Stokes equation@1#. The standard LGA mod-
els impose, for the sake of computational efficiency, a Bo
ean constraint that restricts the number of particles wit
given velocity at a site to be zero or 1. The local equilibriu
of the mean population of particles is described by
Fermi-Dirac statistics. Therefore, LGA models suffer fro
statistical noise and non-Galilean invariance. These diffic
ties have led to the development of lattice Boltzmann~LB!
models @2,3#. In the lattice Boltzmann method, space a
time are discrete as they are in the LGA method. Instead
using a bit representation for particles, real numbers re
sent the local ensemble-averaged particle distribution fu
tions, and only kinetic equations for the distribution fun
tions are solved. The LB method ignores particle-parti
correlation and often uses the simple Bhatnagar-Gro
Krook collision operator. However, even under these sim
fications they provide the correct evolution of the mac
scopic quantities. The LB method has considerable flexibi
in the choice of the local equilibrium particle distribution. B
this additional freedom, the desired physical properties, s
as Galilean invariant convection, can be achieved. Rea
are referred to a recent review article@4# for a variety of LB
models.

In the LB method, as well as in the LGA method, th
particle velocities belong to a finite set. Consequently,
macroscopic velocity is limited. In general, the LB meth
suffers from the restraint of a small Mach number. Ale
ander, Chen, and Doolen@5# attempted to decrease the sou
speed to augment the Mach number. Moreover, Burg
equation was simulated, showing reasonable agreement
pared to the exact solution. Qian and Orszag@6# studied the
nonlinear deviation of the LB model in a compressible
gime, and presented a numerical simulation of a shock p
file. Recently, the gas-kinetic theory@7,8# and the discrete-
velocity model@9# successfully simulated the compressib
Euler equation. The finite volume method was employed
solve the Boltzmann equations. The discontinuities w
well captured. Reference@10# proposed a compressible L
model and successfully simulated the Sod shock-tube p
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lem. However, due to the restraint mentioned above,
standard LB method has great difficulty in simulating co
pressible Euler flows at a high Mach number. In the pres
paper, we propose a locally adaptive LB model. The part
velocity set is chosen according to the fluid local veloc
and internal energy, which no longer limits the fluid velocit
Consequently, the model is suitable for a wide range
Mach numbers. The specific heat ratiog can be adjusted
freely by introducing the particle potential energy. In Sec.
we first present an LB model with a discrete particle veloc
and continuous momentum and kinetic energy, and then
rive the corresponding general macroscopic conserva
equations by the Chapman-Enskog method. In Sec. III
determine the equilibrium distribution for supersonic flow
Then the macroscopic conservation equations are turne
be the Navier-Stokes equations. Section IV is about
simulation. Section V is the conclusions.

II. SEMIDISCRETE VELOCITY LB MODEL

In the standard LB model, space, time, and the part
velocity are all discrete. The particle with velocityc has the
momentummc and kinetic energy1

2 mc2, and moves a dis-
tancec from a node to another node during one step tim
wherem is the particle mass. Now we consider what we c
a ‘‘semidiscrete velocity LB model’’: the particle velocity i
discrete, while the momentum and kinetic energy may
continuous. We suppose that a particle has two velocit
the ‘‘migrating velocity’’ r , transporting the particle from a
node to its neighbor node at a distancerDt during the dis-
crete timeDt, and the velocityjPD for calculating the mo-
mentum and the kinetic energy of the particle, whereD is a
bounded domain inR3 ~or in R2 for two-dimensional mod-
els! and rPD. In other words, a particle with the migratin
velocity r may have the momentummj and kinetic energy
1
2 mj2, wherer is discrete andj is continuous. The objective
of introducing such a semidiscrete velocity LB model is
increase the accuracy of the model. When the domainD
constricts tor , the semidiscrete model becomes the discr
model.

Let x be an arbitrary node of a lattice;f (x,r ,j,t) is the
density distribution function for the particle with the veloci
j and the migrating velocityr , moving tox1rDt duringDt.
In order to obtain an arbitrary special heat ratiog, we intro-
duce the particle potential energyF @11#. The total energy of
7283 © 1998 The American Physical Society
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a particle is the sum of kinetic energy and the potential
ergy, i.e., 1

2 mj21mF. The conserved total mass, mome
tum and energy are defined as

r5(
r
E
D

m f~x,r ,j,t !dj, ~1!

rv5(
r
E
D

mjf ~x,r ,j,t !dj, ~2!

rE5(
r
E
D

mS 1

2
j21F D f ~x,r ,j,t !dj. ~3!

Define

^•&5(
r
E
D
•dj,

h5Xm,mj,mS 1

2
j21F D CT

,

Y5~r,rv,rE!T.

Formulas~1!, ~2!, and~3! can be written in the compact form

Y5^hf ~x,r ,j,t !&. ~4!

In LB models, the Boltzmann equation is written as

f ~x1rDt,r ,j,t1Dt !2 f ~x,r ,j,t !5V, ~5!

where

V52
1

t
@ f ~x,r ,j,t !2 f eq~x,r ,j,t !#, ~6!

and f eq(x,r ,j,t) is the equilibrium distribution depending o
the total mass, momentum, and energy.

Now we study the convective and the dissipative prop
ties of the model from the Chapman-Enskog expansion
the solution of Eq.~5! @12#. We chooseDt5eT, whereT is
a reference time scale ande a typical small parameter. W
are then looking for a solution of Eq.~5! as an asymptotic
expansion of the forms

f 5 (
n50

`

enf ~n!, ~7!

]Y

]t
5 (

n50

`

enF~n!, ~8!

where f (n) and F(n) depend only onY and its successive
gradients.f (0)5 f eq is completely determined by the macr
scopic variablesr, rv, andrE, and verifies

Y5^hf eq~x,r ,j,t !&. ~9!

Considering the relations~4!, ~9!, ~7!, and~6!, we have

^hf ~n!&50, ; n>1 ~10!

^hV&50. ~11!
-

r-
f

We Taylor expand the left-hand side of Eq.~5!:

D f 5 f ~x1rDt,r ,j,t1Dt !2 f ~x,r ,j,t !

5eTH ] f ~0!

]Y
•F~0!1r•¹ f ~0!J

1e2TH ] f ~0!

]Y
•F~1!1

] f ~1!

]Y
•F~0!

1
] f ~1!

]¹Y
•¹F~0!1r–¹f ~1!J

1
e2T2

2 H ]2f ~0!

]Y]Y
:F~0!F~0!1rr :¹¹ f ~0!

12r•S ] f ~0!

]Y
•F~0!D 1

] f ~0!

]Y
•

]F~0!

]t J . ~12!

By identifying the first order terms ofe in Eq. ~5!, we can
determinef (1), and, considering Eqs.~10! and ~11!, we ob-
tain F(0) andF(1):

f ~1!52tTH ¹f eq
•r1

] f eq

]Y
•F~0!J ,

F~0!52div^r f eqh&,

F~1!52divK H f ~1!r1
T

2Fdiv~ f eqrr !1
] f eq

]Y
•F~0!r G J hL .

Up to order 1, Eq.~8! is written as

]Y

]t
52div^ f eqrh&2eTS 1

2
2t DdivFdiv^ f eqrr h&

1 K ] f eq

]Y
•F~0!rhL G . ~13!

This macroscopic conservation equation depends on the
tribution of f eq. In Sec. III we will see that if the equilibrium
distribution is properly determined it may become t
Navier-Stokes equation.

III. EQUILIBRIUM DISTRIBUTIONS

We consider the symmetric vector set$cj n8 ; j 51,... ,bn%
connecting a node to its equal distance neighbor nodes
regular lattice, wherebn is the number of vector directions
For a hexagonal lattice we choose bn

56. n51 and 2. The module ofcj n8 is cn8 . Let x be an
arbitrary node;v is the fluid velocity at this node, andv1 , v2 ,
andv3 are the vectors from the nodex to the apexes of the
triangle containing the velocity vectorv. We introduce the
particle velocitiescj nk and c̄j n and the fluctuating velocities
vk8 (k51,2,3):

cj nk5vk1cj n8 , ~14!

c̄j n5v1cj n8 , ~15!
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vk5v1vk8 . ~16!

In the standard LB models, the particle velocities are c
stant; therefore, the mean velocity~i.e., the fluid velocity! is
limited. In present model, the particle velocities are adap
to the mean velocity. The mean velocity is then rid of t
constraint of the particle velocities. For high speed flow
fluctuating velocitiesvk8 is small.

For r5cj nk , we define

f j nk
eq ~x,j,t !5 f eq~x,cj nk ,j,t !,

and for the otherr we set f eq(x,r ,j,t)50. We suppose
f j nk

eq (x,j,t) to have the form

f j nk
eq ~x,j,t !5dnkd~j2 c̄j n!, ~17!

where d(j) is the d function. d(j)50 for jÞ0;
*g(j)d(j)dj5g(0). Equation~13! becomes

]Y

]t
52div(

k,n, j
H dnkcj nkhj n1aFdiv~dnkcj nkcj nkhj n!

1F~0!
•

]

]Y
~dnkcj nkhj n!G J , ~18!

wherea5eT( 1
2 2t), and

hj n5„m,mc̄j n ,m~ 1
2 c̄j n

2 1F!…T. ~19!

Substitutingf j nk
eq into Eq. ~9!, we have

r5(
k,n

mbndnk5 (
k51

3

rk , ~20!

rE5 (
k,n, j

mdnk@
1
2 ~v1cj n8 !21F#

5 1
2 rv21(

k,n

1
2 mbndnkcn8

21rF, ~21!

whererk5(nmbndnk . The second component of Eq.~9! is
automatically verified as long asdnk verify Eq. ~20!. In order
to increase the accuracy, we assume thatrk satisfy the fol-
lowing equation:

rv5 (
k51

3

rkvk . ~22!

For a givenr andrv it can be proved that Eqs.~20! and
~22! have unique non-negative solutions forrk ~see Fig. 1!.

FIG. 1. Particle velocities.
-

d

e

Equations~20! and ~22! permit us to write

(
k

rkvk850. ~23!

Thanks to Eq.~23!, we will see that the first order ofvk8 in
the conservation equations will disappear. We introduce
density portionak5rk /r, and we supposednk to have the
form

dnk5akdn , ~24!

wheredn5(kdnk will be determined by the density and th
pressure~or internal energy!.

The perfect gas with special heat ratiog verifies p5(g
21)re, wheree5E2 1

2 v2 is the internal energy. The pres
surep has the form

p5(
n

mbndn

1

D
cn8

2, ~25!

whereD is the space dimension.
In the case wherecn8 have two levels (n51 and 2!, one

can determined1 , d2 , andF by Eqs.~20!, ~21!, and~25!:

d15
rc28

22Dp

b1m~c28
22c18

2!
,

d25
Dp2rc18

2

b2m~c28
22c18

2!
,

F5F12
D

2
~g21!Ge.

In order to ensure the positivity ofd1 andd2 , c18 andc28
are required to verifyc18

2,Dp/r,c28
2. However,c18 andc28

are not completely determined. In practice, we choosec18 and
c28 to be as close as possible to each other. For a t
dimensional Boltzmann model without particle potential e
ergy, the special heat ratiog is 2 @9#. From the relation above
we can see thatF50 wheng52, agreeing with the standar
LB models.

Now the equilibrium is completely determined. Conside
ing relations~14!, ~15!, ~16!, ~22!, and ~23!, we derive the
continuity, momentum, and energy equations from Eq.~18!:

]r

]t
1div~rv!50, ~26!

]rv

]t
1div~rvv!1¹p

5div$m@¹v1~¹v!T2~g21!div vId#1B1%, ~27!

r
]E

]t
1div~pv1rEv!

5div$mv•@¹v1~¹v!T2~g21!div vId#%

1eT~t2 1
2 !div$¹A1¹~pF!2ge¹p1B2%, ~28!



on

o

-
th

st

of

r
(

e
sys-

r-

at
me
and

h

of

a-
l

ob-

act

nd
-

ely.
u-
ary
ows

ity
o

ra-
:

7286 PRE 58CHENGHAI SUN
where

m5eT~t2 1
2 !p,

B15div(
k,n

mbndnkvvk8vk8 ,

B25div(
k,n

mbndnk@
1
2 ~v21cn8

2!1F# vk8vk8 ,

A5(
n

mbndn

1

2D
cn8

4.

eT is the time step, andm is the viscosity. In Eq.~28! the
first and the second terms on the right-hand side corresp
respectively, to the dissipation and the diffusion.B1 andB2
can be regarded as discretion error. Then Eqs.~26!, ~27!, and
~28! become Navier-Stokes equations.

In the discrete velocity LB model case, the distribution
f eq in phase space ofj concentrates atcj nk , i.e.,

f j nk
eq ~x,j,t !5dnkd~j2cj nk!,

andhj n in Eq. ~18! is replaced by

hj nk5„m,mcj nk ,m~ 1
2 cj nk

2 1F!…T. ~29!

Then, from Eq.~18! we obtain the continuity equation~26!
and momentum and energy equations similar to Eqs.~27!
and ~28!. But there are additional terms div(k,nmbndnkvk8vk8

and div(k,nmbndnk
1
2 vk8

2v on the left-hand sides of the mo
mentum and energy equations, respectively. Therefore,
model is less accurate. This is the reason that we have e
lished the present semidiscrete velocity LB model.

FIG. 2. The sod shock-tube problem: the profiles of dens
pressure, internal energy, and velocity at the 80th iteration time
a 40034 node lattice (t51 andg51.4). The solid lines are the
exact solutions of the Euler system.
d,

f

is
ab-

IV. NUMERICAL SIMULATIONS

If we regard the viscous terms and the diffusion terms
the right-hand sides of Eqs.~27!, and ~28! as the discretion
error, Eqs.~26!, ~27!, and ~28! become an inviscid Eule
system. In fact, the viscosity and diffusivity are of ordert
2 1

2 ) l 2/Dt, where l is the unit length of the lattice and
Dt(5eT) is the unit time. The model is of first order for th
Euler system, and second order for the Navier-Stokes
tem.

Whent51 the Boltzmann equation~5! becomes

f j nk~x1cj nkDt,t1Dt !5 f j nk
eq ~x,t !.

Sincef j nk
eq depends only on fluid density, velocity, and inte

nal energy, the particle distributionf j nk at t1Dt is also de-
termined by them, independent of the particle distribution
time t. The need of computer memory and computation ti
is considerably reduced. We have performed the Sod test
the shock reflection simulation under the conditiont51 and
g51.4.

A. Sod test

The classical Sod test@13# case is the blast-wave test wit
the initial conditionsr l51, pl51, and ul50;r r50.125,
pr50.1, andur50 correspond to an initial pressure ratio
10 and a density ratio of 8. Subscriptl denotes the left half,
and subscriptr denotes the right half at time 0. The simul
tion was performed on a 40034 node lattice. The periodica
condition was taken in they direction. Figure 2 shows the
density, pressure, velocity, and internal energy profiles
tained from the present LB model simulation, wheret is the
80th iteration. The solid lines in the figure represent the ex
solution of the Euler system.

B. Shock reflection

The computational domain is a rectangle of length 4 a
height 1 divided into 280380 nodes. The Dirichlet condi
tions

~r,u,v,p!u~0,y,t !5~1.0,2.9,0.0,1/1.4!,

~r,u,v,p!u~x,1,t !5~1.699 97,2.193 4,20.506 33,1.528 19!

are imposed on the left and upper boundaries, respectiv
The bottom boundary is a reflecting wall. Initially, the sol
tion of the entire domain is set to be that at the left bound
@14#. Figure 3 shows the pressure contours. Figure 4 sh
the corresponding pressure profile aty50.5.

,
n

FIG. 3. Shock reflection: pressure contours at the 600th ite
tion; grid size: 280380. Left and up boundary conditions
(r,u,v,p)u(0,y,t)5(1.0,2.9,0.0,1/1.4); (r,u,v,p)u(x,1,t)5(1.69997,
2.1934,20.50633,1.52819).
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The simulations were carried out on Pentium II 266 p
sonal computer. One time step needs 1.5 s on a 280380
hexagonal lattice, i.e., about 6.731025 s per node. The tota
time is proportional to the total number of nodes.

V. CONCLUSION

In this paper, we have established an LB model for hig
speed flows. It can handle flows over a wide range of Ma

FIG. 4. p at y50.5.
tt.
-

-
h

numbers and capture shock jumps. The adaptive natur
the particle velocities makes a link between the LB mo
and the discrete-velocity models@15#. The courant model is
of first order for Euler system and second order for Navi
Stokes system. We have performed the Sod shock-tube s
lation and the two-dimensional shock reflection simulatio
Although the simulations were carried out on a hexago
lattice, the model can be easily applied to both two- a
three-dimensional square lattices. Due to the simple form
the equilibrium distribution, the fourth-order velocity tenso
do not involve in the calculations. On square lattices, th
will be no need of a special treatment for the homogeneity
the fourth-order velocity tensors. The major limitation of th
current model is thatt should be set to 1; otherwise, th
simulations would need an enormous amount of compu
memory and time.
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