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Lattice-Boltzmann models for high speed flows
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We formulate a lattice Boltzmann model to solve supersonic flows. The particle velocities are determined by
the mean velocity and internal energy. The adaptive nature of particle velocities permits the mean flow to have
a high Mach number. The introduction of a particle potential energy causes the model to be suitable for a
perfect gas with an arbitrary specific heat ratio. The macroscopic conservation equations are derived by the
Chapman-Enskog method. The simulations were carried out on the hexagonal lattice. However, the extension
to both two- and three-dimensional square lattices is straightforward. As preliminary tests, we present the Sod
shock-tube simulation and the two-dimensional shock reflection simula&df©.63-651X98)15911-]

PACS numbdss): 47.40~x, 05.50+q, 51.20+d

I. INTRODUCTION lem. However, due to the restraint mentioned above, the
standard LB method has great difficulty in simulating com-
The lattice gas automatof.GA) model was introduced Pressible Euler flows at a high Mach number. In the present
as an alternative to traditional methods for numerically solv-Paper, we propose a locally adaptive LB model. The particle
ing the Navier-Stokes equati¢ti]. The standard LGA mod- VElOCity set is chosen according to the fluid local velocity
els impose, for the sake of computational efficiency, a Bool_and internal energy, which no longer limits the fluid velocity.

ean constraint that restricts the number of particles with ??Aggzeﬂld?nn;gr’sth‘l?héncs)gzlchl‘isc Shuelgatbertjg)cra? \tl)védg d;ﬁg,?e% of

given velocity at a site to be zero or & The Iocal_ eqUIIIbrIuml‘reely by introducing the particle potential energy. In Sec. Il
of the mean population of particles is described by the, o firt hresent an LB model with a discrete particle velocity
Fermi-Dirac statistics. Therefore, LGA models suffer from and continuous momentum and kinetic energy, and then de-
statistical noise and non-Galilean invariance. These difficulyje the corresponding general macroscopic conservation
ties have led to the development of lattice BoltzmahB)  equations by the Chapman-Enskog method. In Sec. Il we
models[2,3]. In the lattice Boltzmann method, space andgetermine the equilibrium distribution for supersonic flows.
time are discrete as they are in the LGA method. Instead ofhen the macroscopic conservation equations are turned to
using a bit representation for particles, real numbers reprene the Navier-Stokes equations. Section IV is about the
sent the local ensemble-averaged particle distribution funcsimulation. Section V is the conclusions.

tions, and only kinetic equations for the distribution func-

tions are solved. The LB method ignores particle-particle Il. SEMIDISCRETE VELOCITY LB MODEL

correlation and often uses the simple Bhatnagar-Gross- In the standard LB model, space, time, and the particle
Krook collision operator. However, even under these Simp”'velocity are all discrete. The |'oarticle ’vvith \;elocktWas the
fications they provide the correct evolution of the macro-

) - : A momentummc and kinetic energy: mc?, and moves a dis-
scopic quantities. The LB method has considerable flexibility,;cac from a node to another node during one step time

in_the chqice of the local equilibr'ium partigle distributipn. BY wheremis the particle mass. Now we consider what we call
this additional freedom, the desired physical properties, such «semidiscrete velocity LB model”: the particle velocity is
as Galilean invariant convection, can be achieved. Readetfiscrete, while the momentum and kinetic energy may be
are referred to a recent review arti¢i for a variety of LB continuous. We suppose that a particle has two velocities:
models. the “migrating velocity” r, transporting the particle from a
In the LB method, as well as in the LGA method, the node to its neighbor node at a distarrckt during the dis-
particle velocities belong to a finite set. Consequently, therrete timeAt, and the velocitye D for calculating the mo-
macroscopic velocity is limited. In general, the LB method mentum and the kinetic energy of the particle, whBrés a
suffers from the restraint of a small Mach number. Alex-bounded domain ifR? (or in R? for two-dimensional mod-
ander, Chen, and DooléB] attempted to decrease the soundels) andr e D. In other words, a particle with the migrating
speed to augment the Mach number. Moreover, Burger'selocity r may have the momentumé and kinetic energy
equation was simulated, showing reasonable agreement comé?, wherer is discrete and is continuous. The objective
pared to the exact solution. Qian and Orsg@pstudied the of introducing such a semidiscrete velocity LB model is to
nonlinear deviation of the LB model in a compressible re-increase the accuracy of the model. When the donfain
gime, and presented a numerical simulation of a shock proeonstricts tor, the semidiscrete model becomes the discrete
file. Recently, the gas-kinetic theofy,8] and the discrete- model.
velocity model[9] successfully simulated the compressible Let x be an arbitrary node of a latticé(x,r,&,t) is the
Euler equation. The finite volume method was employed talensity distribution function for the particle with the velocity
solve the Boltzmann equations. The discontinuities were and the migrating velocity, moving tox+rAt during At.
well captured. ReferencilO] proposed a compressible LB In order to obtain an arbitrary special heat ragiowe intro-
model and successfully simulated the Sod shock-tube prolituce the particle potential enerdy[11]. The total energy of
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a particle is the sum of kinetic energy and the potential enWe Taylor expand the left-hand side of E§):

ergy, i.e.,mé&?+m®. The conserved total mass, momen-

tum and energy are defined as

p=3 [ miccrgnag @
pVZZ fDmgf(x,r,g,t)dg, )
1
pE=> J'm E§2+c1>)f(x,r,§,t)o|§. 3
r D

Define

(=3 | ag

1
7= (m,m§,m(§§2+ d

)T
Y=(p,pV.pE)".

Formulas(1), (2), and(3) can be written in the compact form

Y=(nf(x,r,£1)). (4)
In LB models, the Boltzmann equation is written as
f(X+rAtr Et+ A —f(x,r,£1)=0Q, )
where
Q=- %[f(x,r,&t)—fe"(x,r,f,t)], (6)

andféqx,r,&t) is the equilibrium distribution depending on
the total mass, momentum, and energy.

Now we study the convective and the dissipative proper-

PRE 58
Af=f(x+rAt,r,§t+At)—f(x,r, 1)
of@
= .E0) .V (0
eT{ pY; FY+r.Vf ]
of(® af®
2 i ={¢)) .F0)
+eT pY; F+ P F
IfD
. (0) Rvi{eY)
+&VY VF® +r.Vf }
€’T?( 9%f©
.(0)=(0) . (0)
5 {aYaY'F FY4rr:vvi
ot @ o) ot gF?
+2r- EY; -F )+ N ot } 12

By identifying the first order terms of in Eq. (5), we can
determinef™), and, considering Eq$10) and (11), we ob-
tain F©© and F(Y:

) gfea
- eq,
f TT{ Vel r+ o

~F(O)],

FO = —div(rfey),

ofed

H e
div(f®%r)+ 7y

-
F= —div< ( fOr+ 5

woul )

div(f®%r )

Up to order 1, Eq(8) is written as

1
p ——diV<fe°f1]>—eT< div

E—T
“

afed
aY

-FOr n> . (13

ties of the model from the Chapman-Enskog expansion of

the solution of Eq(5) [12]. We chooselt= €T, whereT is

a reference time scale arda typical small parameter. We
are then looking for a solution of E@5) as an asymptotic
expansion of the forms

enfm, (7)

[

N > " (8)
ot n=0 '

where f(" and F(" depend only onY and its successive
gradients.f(®)=f®% s completely determined by the macro-
scopic variablep, pv, andpE, and verifies

Y =(nfx,r,£1). 9
Considering the relation@), (9), (7), and(6), we have
(nf™)=0,

(pQ2)=0.

V n=1 (10

13

This macroscopic conservation equation depends on the dis-
tribution of f¢% In Sec. 11l we will see that if the equilibrium
distribution is properly determined it may become the
Navier-Stokes equation.

[ll. EQUILIBRIUM DISTRIBUTIONS

We consider the symmetric vector @, ;j=1,... b,}
connecting a node to its equal distance neighbor nodes on a
regular lattice, wherd,, is the number of vector directions.
For a hexagonal lattice we choose b,
=6. =1 and 2. The module o€, is c,. Let x be an
arbitrary nodey is the fluid velocity at this node, and, v,,
andv; are the vectors from the nodeto the apexes of the
triangle containing the velocity vectat. We introduce the

particle velocitiesc;,« and?jy and the fluctuating velocities
v (k=1,2,3):

Cj k= Vgt lev’ (14)

- _ ’
CJ'V—V"F C;

Jv?

(15
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V=V V. (16

In the standard LB models, the particle velocities are con-

stant; therefore, the mean velocifye., the fluid velocity is
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Equations(20) and (22) permit us to write

2 pi=0. (23)

limited. In present model, the particle velocities are adapted
to the mean velocity. The mean velocity is then rid of theThanks to Eq(23), we will see that the first order of, in
constraint of the particle velocities. For high speed flow thethe conservation equations will disappear. We introduce the

fluctuating velocitiess, is small.
Forr=c;,,, we define

fjegk(xagit) = feo(xicj vk ,§,t),

and for the otherr we set f*{x,r,&t)=0. We suppose
fik(X,&1) to have the form

(%, &) =dd(£-C;,),

where 6(§) is the § function. §(§=0 for
J9(&)8(&dé=g(0). Equation(13) becomes

17
£#0;

aY )
ot div(d ,Cj i Cj vk 1)

=— dIVkE {dkaj vk ,Ta
V)

F© J d 18
+ 'W( kG ok M) | [ 5 (18
wherea=¢€T(3— 1), and
_ . 1.2 T
njv_(mvmcjvvm(ﬁcjv+q))) . (19)
Substitutingf {7 into Eq. (9), we have
3
PZZ mbvdvk:z Pk (20)
k,v k=1
pE= 2 md,[3(v+c,)?+ @]
K,v,]j
_ 1 2 1 12
= $ pv2+ >, 3 mb,d,cC 2+ p®, (22)
k,v

wherep,=X,mb,d,,. The second component of E®) is
automatically verified as long ak, verify Eq. (20). In order
to increase the accuracy, we assume phasatisfy the fol-
lowing equation:

3

pV= gl PV - (22)

For a givenp andpv it can be proved that Eq$20) and
(22) have unique non-negative solutions far (see Fig. L

FIG. 1. Particle velocities.

density portiona= py/p, and we supposd,, to have the
form
dy=ad,, (24)

whered,=Z,d,, will be determined by the density and the
pressurgor internal energy

The perfect gas with special heat ratjoverifies p=(y
—1)pe, wheree=E—3v? is the internal energy. The pres-
surep has the form

1
pzz mbvdvac;z’ (25)

14
whereD is the space dimension.

In the case where, have two levels =1 and 2, one
can determinal,, d,, and® by Egs.(20), (21), and(25):

pCy°—Dp

1= 5 5
b;m(cs%—c;?)

Dp-pc;®
2T o o0
b,m(c5*—c;?)

[ D
P=[1-—(y—1)le.

2

In order to ensure the positivity af, andd,, c; andc,
are required to verifi;2<Dp/p<c42. However,c; andc,
are not completely determined. In practice, we chagsend
c, to be as close as possible to each other. For a two-
dimensional Boltzmann model without particle potential en-
ergy, the special heat ratipis 2[9]. From the relation above
we can see thab=0 wheny=2, agreeing with the standard
LB models.

Now the equilibrium is completely determined. Consider-
ing relations(14), (15), (16), (22), and(23), we derive the
continuity, momentum, and energy equations from @®):

aip . _
E+dlv(pv)—0, (26)
dpv
e +div(pvv)+Vp
=div{u[ Vv+ (V) T=(y—1)divvl 4]+ B,}, (27)
JE
P +div(pv+ pEV)
=div{uv-[Vv+ (V) T=(y—1)divvi4]}
+€T(7— 3)div{VA+V(p®)— yeVp+B,}, (28
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FIG. 3. Shock reflection: pressure contours at the 600th itera-
tion; grid size: 28 80. Left and up boundary conditions:
3.1 b u (P.U.pr)|(0,y,1):(1-012-9.0-0 1/14), F(rurvvp)|(x,l,t):(1-69997-

1.0
2o ] 09 ] 2.1934;-0.50633,1.52819).
0.8 A
z: ] 06 ] IV. NUMERICAL SIMULATIONS
) 0.5
231 8: If we regard the viscous terms and the diffusion terms of
. 02 4 the right-hand sides of Eq&27), and(28) as the discretion
1:7 . 0.0 4 error, Egs.(26), (27), and (28) become an inviscid Euler
0 025 05 075 1 o o o025 os ors 1 . system.lIn fact, the viscosity and diffusivity are of order (

—1)I%/At, wherel is the unit length of the lattice and
FIG. 2. The sod shock-tube problem: the profiles of density,At(=€T) is the unit time. The model is of first order for the
pressure, internal energy, and velocity at the 80th iteration time ofEuler system, and second order for the Navier-Stokes sys-

a 400<4 node lattice {=1 and y=1.4). The solid lines are the tem.

exact solutions of the Euler system. When r=1 the Boltzmann equatiofs) becomes
where fi(X+ Gt t+ At =7l (x,1).

Sincef?} depends only on fluid density, velocity, and inter-
nal energy, the particle distribution,, att+ At is also de-
termined by them, independent of the particle distribution at
Blzdivz mb,d WiV, , f[imet. The need of computer memory and computation time

v is considerably reduced. We have performed the Sod test and
the shock reflection simulation under the conditienl and

p=€T(r=3)p,

y=1.4.
Bo=divY, mb,d,f3 (v?+c,?)+PIvivg,
ko A. Sod test
1 The classical Sod teft 3] case is the blast-wave test with
AzE mbvdvﬁc’v“. the initial conditionsp;=1, p;=1, and u;=0;p,=0.125,

p,=0.1, andu,=0 correspond to an initial pressure ratio of
. . ] . ] 10 and a density ratio of 8. Subscriptienotes the left half,
€T is the time step, ang is the viscosity. In Eq(28) the  and subscript denotes the right half at time 0. The simula-
first and the second terms on the right-hand side corresponggn was performed on a 40604 node lattice. The periodical
respectively, to the dissipation and the diffusi@®.andB,  condition was taken in thg direction. Figure 2 shows the
can be regarded as discretion error. Then B2, (27), and  gensity, pressure, velocity, and internal energy profiles ob-

(28) become Navier-Stokes equations. o tained from the present LB model simulation, wheie the
" the discrete velocity LB model case, the distribution of goth jteration. The solid lines in the figure represent the exact
f9in phase space & concentrates at; i, i.e., solution of the Euler system.
ok &0 =d i (€ ), B. Shock reflection

The computational domain is a rectangle of length 4 and
height 1 divided into 28880 nodes. The Dirichlet condi-
tions

and »;, in Eq. (18) is replaced by

7,k= (M.MC) 4, M(3 ¢y + D). (29
(p,u,v,p)|(0y.n=(1.0,2.9,0.0,1/1.1%
Then, from Eq.(18) we obtain the continuity equatio{26)
and momentum and energy equations similar to Eg3) (p,U,0,P)|(x,1=(1.69997,2.193 4,0.506 33,1.528 19

and(28). But there are additional terms dy,,mb,d,.VkVk  are imposed on the left and upper boundaries, respectively.
and diZ ,mb,d,.3vi2v on the left-hand sides of the mo- The bottom boundary is a reflecting wall. Initially, the solu-
mentum and energy equations, respectively. Therefore, thison of the entire domain is set to be that at the left boundary
model is less accurate. This is the reason that we have estgld4]. Figure 3 shows the pressure contours. Figure 4 shows
lished the present semidiscrete velocity LB model. the corresponding pressure profileyat 0.5.
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P numbers and capture shock jumps. The adaptive nature of
the particle velocities makes a link between the LB model
and the discrete-velocity moddl$5]. The courant model is
2.9 4 of first order for Euler system and second order for Navier-
15 4 Stokes system. We have performed the Sod shock-tube simu-
10 4 lation and the two-dimensional shock reflection simulation.
Although the simulations were carried out on a hexagonal
0 1 2 3 s lattice, the model can be easily applied to both two- and
x three-dimensional square lattices. Due to the simple form of
FIG. 4. p aty=0.5. the equilibrium distribution, the fourth-order velocity tensors
do not involve in the calculations. On square lattices, there
The simulations were carried out on Pentium Il 266 per-Will be no need of a special treatment for the homogeneity of
sonal computer. One time step needs 1.5 s on a<380 the fourth—order_ velocity tensors. The major I|m|tat|o_n of the
hexagonal lattice, i.e., about 20 ° s per node. The total c_urrent_model is that- should be set to 1; otherwise, the
time is proportional to the total number of nodes. simulations would need an enormous amount of computer
memory and time.

25 4

0.5
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